Opportunity or catastrophe? effect of sea salt on host-parasite survival and reproduction

Author:

Yu AoORCID,Vannatta J. Trevor.ORCID,Gutierrez Stephanie O.,Minchella Dennis J.

Abstract

Seawater intrusion associated with decreasing groundwater levels and rising seawater levels may affect freshwater species and their parasites. While brackish water certainly impacts freshwater systems globally, its impact on disease transmission is largely unknown. This study examined the effect of artificial seawater on host-parasite interactions using a freshwater snail host, Biomphalaria alexandrina, and the human trematode parasite Schistosoma mansoni. To evaluate the impact of increasing salinity on disease transmission four variables were analyzed: snail survival, snail reproduction, infection prevalence, and the survival of the parasite infective stage (cercariae). We found a decrease in snail survival, snail egg mass production, and snail infection prevalence as salinity increases. However, cercarial survival peaked at an intermediate salinity value. Our results suggest that seawater intrusion into freshwaters has the potential to decrease schistosome transmission to humans.

Publisher

Public Library of Science (PLoS)

Subject

Infectious Diseases,Public Health, Environmental and Occupational Health

Reference65 articles.

1. Centuries of thermal sea-level rise due to anthropogenic emissions of short-lived greenhouse gases;K Zickfeld;Proc Natl Acad Sci U S A,2017

2. Increased salinization of fresh water in the Northeastern United States;SS Kaushal;Proc Natl Acad Sci U S A,2005

3. Effects of salinity on multiplication and transmission of an intertidal trematode parasite;F Lei;Mar Biol,2011

4. Ecological consequences of parasitism;D Preston;In: Nature Education Knowledge,2010

5. Antagonism between parasites within snail hosts impacts the transmission of human schistosomiasis;MR Laidemitt;Elife,2019

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3