Abstract
BackgroundAs an invasive mosquito species in the United States,Aedes albopictusis a potential vector of arboviruses including dengue, chikungunya, and Zika, and may also be involved in occasional transmission of other arboviruses such as West Nile, Saint Louis encephalitis, eastern equine encephalitis, and La Crosse viruses.Aedes albopictusfeeds on a wide variety of vertebrate hosts, wild and domestic, as well as humans.Methodology/Principal findingsIn order to investigate blood feeding patterns ofAe.albopictus, engorged specimens were collected from a variety of habitat types using the Centers for Disease Control and Prevention light traps, Biogents Sentinel 2 traps, and modified Reiter gravid traps in southeast Virginia. Sources of blood meals were determined by the analysis of mitochondrialcytochrome bgene sequences amplified in PCR assays. Our aims were to quantify degrees ofAe.albopictusinteractions with vertebrate hosts as sources of blood meals, investigate arboviral infection status, assess the influence of key socioecological conditions on spatial variability in blood feeding, and investigate temporal differences in blood feeding by season. Analysis of 961 engorged specimens ofAe.albopictussampled between 2017–2019 indicated that 96%, 4%, and less than 1% obtained blood meals from mammalian, reptilian, and avian hosts, respectively. Domestic cats were the most frequently identified (50.5%) hosts followed by Virginia opossums (17.1%), white-tailed deer (12.2%), and humans (7.3%), together representing 87.1% of all identified blood hosts. We found spatial patterns in blood feeding linked to socioecological conditions and seasonal shifts inAe.albopictusblood feeding with implications for understanding human biting and disease risk. In Suffolk Virginia in areas of lower human development, the likelihood of human blood feeding increased as median household income increased and human blood feeding was more likely early in the season (May-June) compared to later (July-October). Screening of the head and thorax of engorgedAe.albopictusmosquitoes by cell culture and RT-PCR resulted in a single isolate of Potosi virus.Conclusion and significanceUnderstanding mosquito-host interactions in nature is vital for evaluating vectorial capacity of mosquitoes. These interactions with competent reservoir hosts support transmission, maintenance, and amplification of zoonotic agents of human diseases. Results of our study in conjunction with abundance in urban/suburban settings, virus isolation from field-collected mosquitoes, and vector competence ofAe.albopictus, highlight the potential involvement of this species in the transmission of a number of arboviruses such as dengue, chikungunya, and Zika to humans. Limited interaction with avian hosts suggests thatAe.albopictusis unlikely to serve as a bridge vector of arboviruses such as West Nile and eastern equine encephalitis in the study region, but that possibility cannot be entirely ruled out.
Funder
Centers for Disease Control and Prevention
Publisher
Public Library of Science (PLoS)
Subject
Infectious Diseases,Public Health, Environmental and Occupational Health