Efficient data labeling strategies for automated muscle segmentation in lower leg MRIs of Charcot-Marie-Tooth disease patients

Author:

Lee Seung-Ah,Kim Hyun SuORCID,Yang Ehwa,Yoon Young Cheol,Lee Ji HyunORCID,Choi Byung-Ok,Kim Jae-Hun

Abstract

We aimed to develop efficient data labeling strategies for ground truth segmentation in lower-leg magnetic resonance imaging (MRI) of patients with Charcot-Marie-Tooth disease (CMT) and to develop an automated muscle segmentation model using different labeling approaches. The impact of using unlabeled data on model performance was further examined. Using axial T1-weighted MRIs of 120 patients with CMT (60 each with mild and severe intramuscular fat infiltration), we compared the performance of segmentation models obtained using several different labeling strategies. The effect of leveraging unlabeled data on segmentation performance was evaluated by comparing the performances of few-supervised, semi-supervised (mean teacher model), and fully-supervised learning models. We employed a 2D U-Net architecture and assessed its performance by comparing the average Dice coefficients (ADC) using paired t-tests with Bonferroni correction. Among few-supervised models utilizing 10% labeled data, labeling three slices (the uppermost, central, and lowermost slices) per subject exhibited a significantly higher ADC (90.84±3.46%) compared with other strategies using a single image slice per subject (uppermost, 87.79±4.41%; central, 89.42±4.07%; lowermost, 89.29±4.71%, p < 0.0001) or all slices per subject (85.97±9.82%, p < 0.0001). Moreover, semi-supervised learning significantly enhanced the segmentation performance. The semi-supervised model using the three-slices strategy showed the highest segmentation performance (91.03±3.67%) among 10% labeled set models. Fully-supervised model showed an ADC of 91.39±3.76. A three-slice-based labeling strategy for ground truth segmentation is the most efficient method for developing automated muscle segmentation models of CMT lower leg MRI. Additionally, semi-supervised learning with unlabeled data significantly enhances segmentation performance.

Funder

National Research Foundation of Korea

Publisher

Public Library of Science (PLoS)

Reference38 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3