Changes in primary metabolism and associated gene expression during host-pathogen interaction in clubroot resistance of Brassica napus

Author:

Ferdausi AleyaORCID,Megha Swati,Kav Nat N. V.,Rahman HabiburORCID

Abstract

The role of primary metabolism during Brassica napus-Plasmodiophora brassicae interaction leading to clubroot resistance has not yet been investigated thoroughly. In this study, we investigated some of the primary metabolites and their derivatives as well as expression of the genes involved in their biosynthesis to decipher this host-pathogen interaction. For this, two sets (clubroot resistant and susceptible) of canola lines were inoculated with P. brassicae pathotype 3A to investigate the endogenous levels of primary metabolites at 7-, 14-, and 21-days after inoculation (DAI). The associated pathways were curated, and expression of the selected genes was analyzed using qRT-PCR. Our results suggested the possible involvement of polyamines (spermidine and spermine) in clubroot susceptibility. Some of the amino acids were highly abundant at 7- or 14-DAI in both resistant and susceptible lines; however, glutamine and the amino acid derivative phenylethylamine showed higher endogenous levels in the resistant lines at later stages of infection. Organic acids such as malic, fumaric, succinic, lactic and citric acids were abundant in the susceptible lines. Conversely, the abundance of salicylic acid (SA) and the expression of benzoate/salicylate carboxyl methyltransferase (BSMT) were higher in the resistant lines at the secondary stage of infection. A reduced disease severity index and gall size were observed when exogenous SA (1.0 mM) was applied to susceptible B. napus; this further supported the role of SA in clubroot resistance. In addition, a higher accumulation of fatty acids and significant upregulation of the pathway genes, glycerol-3-phosphate dehydrogenase (GPD) and amino alcohol phosphotransferase (AAPT) were observed in the resistant lines at 14- and 21-DAI. In contrast, some of the fatty acid derivatives such as phosphatidylcholines represented a lower level in the resistant lines. In conclusion, our findings provided additional insights into the possible involvement of primary metabolites and their derivatives in clubroot resistance.

Funder

Alberta Innovates

Agriculture and Agri-Food Canada

Alberta Agriculture and Forestry

Alberta Canola Producers Commission

Results Driven Agriculture Research

Publisher

Public Library of Science (PLoS)

Reference45 articles.

1. Primary metabolism and plant defense—fuel for the fire;MD Bolton;Molecular plant-microbe Interactions,2009

2. Evaluating plant immunity using mass spectrometry-based metabolomics workflows;AL Heuberger;Frontiers in plant science,2014

3. Virulence and pathotype classification of Plasmodiophora brassicae populations collected from clubroot resistant canola (Brassica napus) in Canada.;SE Strelkov;Canadian Journal of Plant Pathology,2018

4. Genetics and breeding for clubroot resistance in Canadian spring canola (Brassica napus L.).;H Rahman;Canadian Journal of Plant Pathology,2014

5. Life cycle of Plasmodiophora brassicae;K Kageyama;Journal of Plant Growth Regulation,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3