Abstract
Traffic signs detection is an important and challenging task in intelligent driving perception system. This paper proposes an improved lightweight traffic signs detection framework based on YOLOv5. Firstly, the YOLOv5’s backbone is replaced with ShuffleNet v2, which simplifies the calculation complexity and reduces the parameters of backbone network. Secondly, aiming at the problem of inconspicuous traffic sign characteristics in complex road environment, we use the CA attention mechanism in this paper to improve the saliency of the object. Finally, aiming at the large-scale difference between the traffic signs and the high proportion of small objects, we design the BCS-FPN to fuse multi-scale features and improve the representation ability of the small-scale objects. The TT-100K dataset is also analyzed and the dataset is collated. We test on the collated TT-100K dataset for the improved YOLOv5 in this paper. And the results show that compared with YOLOv5s, the mAP of our algorithm is equivalent to that of YOLOv5s, and the speed is improved by 20.8%. This paper also has carried on the experiment on embedded devices, experimental results show that our framework in computing power less embedded devices has a better effect.
Publisher
Public Library of Science (PLoS)
Reference41 articles.
1. Jihu ZH, Haipeng W, Wu L, Yan G, Yunwei D, Xiaochuan J, et al. Safety Awareness Online Detection System of Driving Behavior Based on Software and Hardware Co-design. 2016 IEEE International Conference on Software Quality, Reliability and Security Companion (QRS-C), Vienna, Austria, 2016, pp. 395–399, doi: 10.1109/QRS-C.2016.60
2. Recommendations Supporting Situation Awareness in Partially Automated Driver Assistance Systems;W Felix;IEEE Transactions on Intelligent Transportation Systems,2015
3. Learning Probabilistic Awareness Models for Detecting Abnormalities in Vehicle Motions;C Damian;IEEE Transactions on Intelligent Transportation Systems,2020
4. 6G Wireless Communications Networks: A Comprehensive Survey.;A Muntadher;IEEE Access,2021
5. Tianyun ZH, Qi L, Yunpeng ZH. A Traffic Sign Detection Method based on Saliency Detection. 2019 1st International Conference on Industrial Artificial Intelligence (IAI), Shenyang, China, 2019, pp. 1–6, doi: 10.1109/ICIAI.2019.8850782