A BARCODE-BASED PHYLOGENETIC SCAFFOLD FOR XYSTICUS AND ITS RELATIVES (ARANEAE: THOMISIDAE: CORIARACHNINI)

Author:

Breitling Rainer

Abstract

The phylogenetic relationships and taxonomy of the crab spider genus Xysticus and its closest relatives (i.e., the tribe Coriarachnini, also including, e.g., Ozyptila, Coriarachne and Bassaniana) have long been controversial, with several alternative classifications being proposed, none of which has gained universal acceptance. As Coriarachnini is largely confined to the Holarctic region, the main target area of recent DNA barcoding projects for spiders, a large amount of genetic data for the group is now publicly available. The results of a phylogenetic analysis of this sequence dataset are largely congruent with earlier morphology-based results regarding the evolutionary structure of the group. In particular, they highlight the fact that Xysticus s. lat. is a paraphyletic assembly and that several species groups need to be placed in separate genera to achieve monophyly of Xysticus s. str. Similarly, Coriarachne and Bassaniana appear as independent clades rather than a joined monophyletic Coriarachne s. lat. In contrast, further subdivision of Ozyptila is not supported by the genetic data. Importantly, the analysis also shows that anapophysate members of Xysticus s. lat. form two widely separated groups: a primarily anapophysate division, also including Coriarachne and Bassaniana, at the base of Xysticus s. lat., and a secondarily anapophysate clade deeply nested within Xysticus s. str. This might explain some of the earlier difficulties when trying to define generally accepted subgroups within Xysticus s. lat. The phylogenetic scaffold based on barcode sequences is sufficiently dense and well resolved to attempt the tentative and provisional placement of the majority of species in Xysticus s. lat. in the independent genera Xysticus s. str., Bassaniodes, Psammitis and Spiracme as a starting point for a future more formal revision of the group.

Publisher

Institute for Biodiversity and Ecology

Subject

Insect Science,Plant Science,Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3