Developing a Location-Based Recommender System Using Collaborative Filtering Technique in the Tourism Industry

Author:

Kianinezhad Iman1,Bayati Mehdi2,Harounabadi Ali3,Akbari Donya4

Affiliation:

1. Department of Computer Engineering, Faculty of Engineering, University of Applied Sciences & Technology, Ahvaz, Iran

2. Department of Computer Engineering, Faculty of Engineering, Karoon University, Ahvaz, Iran

3. Department of Computer Engineering, Faculty of Engineering, Islamic Azad University Tehran Center Branch, Tehran, Iran

4. Department of Computer Engineering, Faculty of Engineering, Hamedan Branch, Islamic Azad University, Hamedan, Iran

Abstract

The rapid growth of new information and products in the virtual environment has made it time consuming to acquire relevant information and knowledge amidst a vast amount of information. Therefore, an intelligent system that can offer the most appropriate and desirable among the large amount of information and products by following the conditions and features selected by each user should be essentially efficient. Systems that perform this task are called recommendation systems. Given the volume of social network data, challenges such as short-term processing and increased accuracy of recommendations are discussed in this type of system. Hence, it can perform processes faster with less error and can be effective in improving the performance of social recommending systems in improving the classification and clustering of information with the help of collaboration filtering methods. This study first develops an innovative conceptual model of a social network-based tourism recommendation system using Flicker network data. This model is based on 9 key components. The comparison show that the proposed method has an accuracy of 0.3% and a lower error rate.

Publisher

University North

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Some Novel Applications of Recommender System and Road Ahead;Transactions on Computer Systems and Networks;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3