Development of Early Stage Diabetes Prediction Model Based on Stacking Approach

Author:

Cinar Ilkay1,Selim Taspinar Yavuz2,Koklu Murat3ORCID

Affiliation:

1. Department of Computer Engineering, Selcuk University

2. Doganhisar Vocational School, Selcuk University Alaaddin Keykubat Campus

3. Department of Computer Engineering, Selcuk University Alaaddin Keykubat Campus

Abstract

Diabetes is a disease that may pose direct or indirect risks in terms of human health. Early diagnosis can minimize the potential harm of this disease to the body and reduce the probability of death. For this reason, laboratory tests are performed on diabetic patients. The analysis of these tests enables the diagnosis of diabetes. The aim of this study is so quickly diagnose diabetes by using data obtained from patients with machine learning methods. In order to diagnose the disease, k-nearest neighbor (k-NN), logistic regression (LR), random forest (RF) models and the stacking meta model which is created by combining these three models were used. The dataset used in the research includes test samples taken from 520 people. The dataset has 17 features, including 16 input features and 1 output feature. As a result of the classification through this dataset, different classification results were obtained from the models. The classification success of the models LR, k-NN, RF and stacking were found to be 91.3%, 91.7%, 97.9% and 99.6%, respectively. F-score, precision and recall performance metrics were utilized for a detailed analysis of the models' classification results. The obtained results revealed that the stacking model has a sufficient level to be used as a decision support system in the early diagnosis of diabetes.

Publisher

University North

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Stacking with Recursive Feature Elimination-Isolation Forest for classification of diabetes mellitus;PLOS ONE;2024-05-08

2. Detection of Chicken Diseases from Fecal Images with the Pre-Trained Places365-GoogLeNet Model;2023 IEEE 12th International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS);2023-09-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3