Predicting of Impact Strength and Elastic Modulus of Polypropylene/EPDM/Graphene/Glass Fiber Nanocomposites by Response Surface Methodology

Author:

Ashenai Ghasemi Faramarz1,Ghasemi Ismail2,Daneahpayeh Sajjad1,Niyaraki Meysam Nouri3

Affiliation:

1. Faculty of Mechanical Engineering, Shahid Rajaee Teacher Training University, Shabanloo St., Lavizan, Tehran, Iran

2. Department of Polymer Processing, Polymer and Petrochemical Institute (IPPI), 15 km Tehran-Karaj Highway, Pajuhesh Science and Technology Park, Pajuhesh Boulevard, Tehran, Iran

3. Faculty of Mechanical Engineering, Semnan University, Central Administration of Semnan University, Campus 1, Semnan, Iran

Abstract

In the present manuscript, Response Surface Method (RSM) of the experimental planning was applied to optimize the mechanical properties such as impact strength and elastic modulus of polypropylene (PP)/ethylene propylene dine monomer (EPDM) /grapheme Nano sheets (GnPs)/ glass fiber hybrid nanocomposites. According to a Box-Behnken method, three levels of parameters were used for EPDM (5, 10 and 15 wt.%), GnPs (0, 1 and 2 wt.%) and glass fiber (10, 20 and 30 wt.%). In addition, specimens were studied using differential scanning calorimeter (DSC) and scanning electron microscopy (SEM) to see their morphology and thermal properties. It was discovered that GnPs, glass fiber and EPDM played an important role in impact strength and elastic modulus of the nanocomposites. To reach the maximum value of the impact strength and elastic modulus simultaneously, the best amount of additives was about 0.82 wt.% of GnPs, 30 wt.% of glass fiber and 15 wt.% of EPDM. The gained R2 values and the corresponding diagrams showed a desirable accordance (above 0.93 for all the responses) with the experiments and those guessed by the RSM.

Publisher

University North

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3