Affiliation:
1. Rotorcraft Center of Excellence, Department of Aerospace Engineering, The Pennsylvania State University, 233 Hammond Building, University Park, PA 16802
Abstract
This study analytically examines the influence of cyclic variations in flap-, lag-, and torsion-stiffness of the blade root region (at harmonics of the rotational speed), for reduction of vibratory hub loads of a helicopter in forward flight. The results indicate that considerable reduction in hub vibrations is possible using small-to-moderate amplitude cyclic variations in stiffness (no greater than 15% of the baseline stiffness value). Torsion stiffness variations produced moderate reductions in vertical hub force, lag stiffness variations produced substantial reductions in all hub forces and the hub yaw moment, and flap stiffness variations produced very significant reductions in all hub forces and the hub roll and pitch moments. The amplitude of the cyclic stiffness variations required generally increase with increasing forward speed, for comparable reductions in vibration. At any given forward speed, if the amplitudes of cyclic stiffness variation are too large, the hub vibrations can actually increase. The stiffness variations that reduce the vibratory hub loads could produce increases in certain vibratory blade root load harmonics. Vibration reductions are achieved due to a decrease in the inertial contribution to the hub loads, or a change in relative phase of various contributions.
Subject
Mechanical Engineering,General Materials Science
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献