The Telescoping Suture –Part 1: Does this Technique Improve the Mechanical Behavior of a Biomaterial?: Calf Pericardium

Author:

Páez J. M. García1,Herrero E. Jorge,Rocha A.,Martín-Maestro M.,Castillo-Olivares J. L.1,Millán I.2,Sanmartín A. Carrera,Cordón A.3

Affiliation:

1. Servicio de Cirugía Experimental, Clínica Puerta de Hierro, Madrid, España

2. Servicio de Bioestadística, Madrid, España

3. Departamento de Mecánica Estructural y Resistencia de Materiales, Escuela Técnica Superior de Ingenieros, Industriales Madrid, España

Abstract

The authors study the mechanical behavior of calf pericardium employed in the construction of cardiac valve leaflets when subjected to telescoping suture, followed by tensile stress until rupture. One hundred twenty pericardial tissue samples were employed, 60 cut from root-to-apex and another 60 cut in transverse direction. Each of these two groups consisted of 12 control samples that were left unsutured and four sets of 12 samples each that were rejoined by telescoping suture using silk, Prolene, nylon or Gore-Tex., and subjected to tensile stress. At the rupture of the sutured tissues, the tensile stress of the suture materials ranged between 57.54 MPa for the series sewn lengthwise with Gore-tex and 114.08 MPa for the series sewn crosswise with silk. At these levels of stress, the deformation of the suture thread was much less marked than that of the calf pericardium, and internal stresses were produced that were difficult for the biomaterialto absorb. There was a loss of real load in all the sutured series when the observed resistance to rupture, expressed in kilograms, was compared with the estimated value. This loss of resistance did not invalidate the telescoping suture technique since the resistance to rupture was still much greater than that associated with suturing the two edges of the cut pericardium together. This report confirms the deleterious role of the shear force generated in the pericardium by the suture.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fatigue behaviour of young ostrich pericardium;Materials Science and Engineering: C;2012-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3