Experimental Investigation of E/M Impedance Health Monitoring for Spot-Welded Structural Joints

Author:

Giurgiutiu Victor1,Reynolds Anthony,Rogers Craig A.1

Affiliation:

1. Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208

Abstract

Health monitoring results obtained during fatigue testing of a spot-welded lap-shear structural-joint specimen using the electromechanical (E/M) impedance technique are presented. The test specimens were instrumented with piezoelectric wafer transducers, and the base E/M impedance signature was recorded in the 200-1,100 kHz frequency range. Fatigue testing was applied to initiate and propagate crack damage of controlled magnitude. Calibration tests using plain specimens were first performed to correlate stiffness decrease with damage progression and remaining life. During the subsequent health-monitoring tests, the decrease in structural stiffness was used to assess damage progression in the specimen. As damage progressed, the E/M impedance signatures were recorded at predetermined intervals. Signature data were processed, and the RMS impedance change was calculated. Damage index values were observed to increase as crack damage increases. The initiation and propagation of damage was successfully correlated with the E/M impedance measurements. Sensing and the localization principles of E/M impedance method were confirmed, and the rejection of spurious information was verified. These experiments demonstrated that the E/M impedance technique is a potentially powerful tool for damage detection, health monitoring, and NDE of spot-welded structural joints.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 180 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3