An Integrated Health Monitoring Technique Using Structural Impedance Sensors

Author:

Park Gyuhae1,Cudney Harley H.2,Inman Daniel J.1

Affiliation:

1. Center for Intelligent Material Systems and Structures, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0261

2. Center for Intelligent Material Systems and Structures, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0261,

Abstract

This paper presents an integrated methodology to detect and locate structural damage. Two different damage detection schemes are combined in this methodology, which involves utilizing the electromechanical coupling property of piezoelectric materials and tracking the changes in the frequency response function data, respectively. Physical changes in the structure cause changes in mechanical impedance. Due to the electromechanical coupling in piezoelectric materials, this change in structural mechanical impedance causes a change in the electrical impedance of the piezoelectric sensor. Hence, by monitoring the electrical impedance one can qualitatively determine when structural damage has occurred or is imminent. Based on the fact that damage produces local dynamic changes, this technique utilizes a high frequency structural excitation (typically greater than 30 kHz) through the surface-bonded piezoelectric sensor/actuators. As a second step, a newly developed model-based technique, using a wave propagation approach, has been used to quantitatively assess the state of structures. Direct frequency response function data, as opposed to modal data, are utilized to characterize the damage in the structures. A numerical example and an experimental investigation of one-dimensional structures are presented to illustrate the performance of this technique.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 175 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3