Adaptive Neurocontrol of Simulated Rotor Vibrations Using Trailing Edge Flaps

Author:

Spencer Michael G.,Sanner Robert M.,Chopra Inderjit1

Affiliation:

1. Alfred Gessow Rotorcraft Center, Department of Aerospace Engineering, University of Maryland, College Park, MD 20742

Abstract

Smart structure activated trailing edge flaps are capable of actively altering the aerodynamic loads on rotor blades. Coupled with a suitable feedback control law, such actuators could potentially be used to counter the vibrations induced by periodic aerodynamic loading on the blades, without the bandwidth constraints and with a potential of lower weight penalties incurred by servo actuation methods. This paper explores new, robust individual blade control (IBC) methodologies for vibration suppression using a piezoactuated trailing edge flap. The controllers employ a single hidden layer neural network, learning in real time, to adaptively cancel the effects of periodic aerodynamic loads on the blades, greatly attenuating the resulting vibrations. Both collocated and noncollocated sensor/actuator pairs are considered. Proofs of the stability and convergence of the proposed neurocontrol strategies are provided, and numerical simulation results for a one-eighth Froude scale blade model are given which demonstrate that the controller can nearly eliminate the blade vibration arising from a wide variety of unknown, periodic disturbance sources.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advances in Helicopter Vibration Control Methods Time-Periodic Reduced Order Modeling and H2/H-Infinity Controller Design;53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference<BR>20th AIAA/ASME/AHS Adaptive Structures Conference<BR>14th AIAA;2012-04-23

2. Optimal Placement of Piezoelectric Actuated Trailing-Edge Flaps for Helicopter Vibration Control;Journal of Aircraft;2009-01

3. Using the Complete Authority of Multiple Active Trailing-edge Flaps for Helicopter Vibration Control;Journal of Vibration and Control;2008-06-04

4. Wind-Tunnel Testing of Rotor with Individually Controlled Trailing-Edge Flaps for Vibration Reduction;Journal of Aircraft;2008-05

5. Optimal Placement of Piezoelectric Actuated Trailing-Edge Flaps for Helicopter Vibration Control;49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference <br> 16th AIAA/ASME/AHS Adaptive Structures Conference<br> 10t;2008-04-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3