Torsional Actuator and Stepper Motor Based on Piezoelectric d15 Shear Response

Author:

Glazounov A. E.1,Zhang Q. M.2,Kim C.3

Affiliation:

1. Materials Research Laboratory, The Pennsylvania State University, University Park, PA 16802

2. Materials Research Laboratory, The Pennsylvania State University, University Park, PA 16802,

3. Naval Research Laboratory, Washington, DC 20375

Abstract

Two novel devices, torsional actuator and torsional stepper motor, are described and their performance is investigated in detail. Both devices were designed to produce large angular displacement and large torque output from the piezoelectric d15 shear response. In the torsional actuator, the large displacement can be achieved due to built-in amplification of piezoelectric strain using the aspect ratio of a piezoelectric tube. It is shown that the displacement can be controlled by changing the length of the tube, and that the blocking torque developed is independent of the length. It is also shown that the performance of the actuator does not change under external torque load, and that the prestress in radial direction improves the mechanical strength of the actuator without affecting the produced displacement. In the stepper motor, the unlimited angular displacement of the rotor is produced by accumulating the piezoelectric strain by using a direct coupling mechanism between the stator and the rotor, where a clutch drives the rotor by locking it. The direct coupling makes it possible to transmit the whole power generated in the piezoelectric tube to the rotor, and thus achieve the high efficiency of the motor. Also, the locking mechanism allows smooth motion either in a continuous or stepwise fashion within a 360° interval with a precise control over angular positioning. In addition, the advantage of both devices is their simplicity and a possibility to produce them in the compact package.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3