Affiliation:
1. QED Technologies, 1080 University Avenue, Rochester, NY 14607
Abstract
Magnetorheological finishing (MRF) is an enabling technology that may produce surface accuracy on the order of 30 nm peak to valley (p-v) and surface micro-roughness less than 10 A rms. In MRF, mechanical energy for material removal over the portion of the workpiece surface is generated by the magnetically controlled hydrodynamic flow of a magnetorheological polishing fluid. A fundamental advantage of MRF over existing technologies is that the polishing tool does not wear, since the recirculated fluid is continuously monitored and maintained. Polishing debris and heat are continuously removed. The technique requires no dedicated tooling or special setup. A unique attribute of the MRF process is its determinism that is attained through the use of a well-defined material removal function to eliminate known surface error. The efficiency of material removal and the removal process stability are the crucial factors in MRF. In turn, they are primarily dependent on MR polishing fluid stability. It is shown that the joint use of physicochemical and rheological factors along with specially developed methods of the slurry handling, pumping, and in-line monitoring and maintaining provides a level of MR slurry stability that is quite adequate for high precision finishing. Attention is given to methods of MR slurry property measurements.
Subject
Mechanical Engineering,General Materials Science
Cited by
94 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献