Processing and Performance of Continuous Fiber Ceramic Composites by Preceramic Polymer Pyrolysis: II—Resin Transfer Molding

Author:

Ghasemi Nejhad Mehrdad N.,Bayliss Jocelyn K.,Yousefpour Ali1

Affiliation:

1. Advanced Materials Manufacturing Laboratory, Department of Mechanical Engineering, University of Hawaii at Manoa, 2540 Dole Street, Holmes Hall 302, Honolulu, HI 96822

Abstract

Vacuum Assisted Resin Transfer Molding (VARTM) was used in conjunction with preceramic polymer pyrolysis to manufacture Continuous Fiber Ceramic Composites (CFCCs). Two VARTM techniques were used: (a) the use of injection pressure in the presence of a vacuum and (b) the use of vacuum only without the injection pressure. After initial testing, eight CFCC tubes were fabricated using these techniques. The matrix material used was Blackglas™. C-Nicalon™ in the form of woven fabric and BN-Nextel ®312 in the form of braided textile were used as reinforcements. C-Nicalon™ CFCC tubes with 4%–6% porosity, 55%–57% fiber volume fraction, and 2.12–2.18 g/cm3 density reached convergence by weight in 10 cycles (with about 17 hours per cycle), while BN-Nexlet ®312 CFCC tubes with 4%–6% porosity, 70%–72% fiber volume fraction, and 2.42–2.48 g/cm3 density converged by weight in 8 cycles. TheVARTMprocessing time averaged 15 minutes for each tube. The mechanical performance of the components was evaluated at room and high temperatures using a C-ring test. Scanning Electron Microscopy (SEM) was employed to study the microstructure of the parts. The results show that the without injection pressure technique offers a promising method to produce tubular CFCCs in terms of lower manufacturing costs, part uniformity, and enhanced mechanical properties. BN-coating performs better at high temperature compared with C-coating. Also, a combination of BN-coating and a textile braided architecture of fiber preform proved to enhance the performance of the manufactured CFCCs. Finally, the mechanical performances of the manufactured CFCC tubes using VARTMtechnique were compared with those using a cure-on-the-fly filament winding technique for a similar geometry using the same materials.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3