Feedback Control of the Bending Response of Ionic Polymer Actuators

Author:

Mallavarapu Kiran1,Leo Donald J.1

Affiliation:

1. Center for Intelligent Material Systems and Structures, Mechanical Engineering Department, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0261

Abstract

Ionic polymers are a class of active material that exhibit large bending deflections under the application of an electric field. Previous research has demonstrated that the response of an actuator in air is characterized by a large initial deflection and a relaxation to a steady-state value. The time constant of the relaxation is of the order 5–20 s and the overshoot of the step response is typically greater than 100%. These aspects of the step response limit the actuation bandwidth of the material. In this work we explore the use of feedback control techniques to eliminate the large overshoot and reduce the settling time of cantilevered ionic polymer actuators. Control models are developed from measurements of the actuator response to a step change in the applied voltage. The models demonstrate that the dynamics relevant to the control problem can be separated into a low-frequency (< 5 Hz) range in which the response is characterized by a series of time constants, and a high-frequency range (> 10 Hz) characterized by the resonance of the actuator. For shorter polymers the resonance is sufficiently high that it can be ignored in the control design, but the resonant response becomes significant as the length of the polymer increases. Control simulations based on Linear Quadratic Regulator (LQR) theory demonstrate that feedback control eliminates the overshoot in the step response and decreases the settling time by a factor of 10. Control of the actuator oscillation is accomplished by using an LQR weighting matrix that includes the states associated with the actuator resonance, whereas a state weighting matrix that does not include these terms results in a compensator that includes a notch at the actuator resonance. Experimental results on the shorter polymer demonstrate that the overshoot in the step response is eliminated and the settling time is reduced from 12–16 s to 1–2 s, thus verifying the ability of feedback control to shape the step response of the actuator. Experimental results on the longer polymer demonstrate that incorporating the resonance terms in the LQR weighting matrix is the superior control design method. Designs that included a notch in the compensator were unstable for very low gains because of variations in the actuator resonance due to changes in surface hydration. Designs that included phase lead in the compensator produced superior closed-loop performance and resulted in reductions in overshoot and settling time of the order 6–10 s.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Reference18 articles.

Cited by 71 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3