Ripening-Associated Microstructural Changes in Antisense ACC Synthase Tomato Fruit

Author:

Sozzi G. O.1,Fraschina A. A.1,Castro M. A.2

Affiliation:

1. Cátedra de Bioquímica, Departamento de Biología Aplicada y Alimentos, Facultad de Agronomía, Universidad de Buenos Aires, Avda. San Martín 4453, C1417 DSE, Buenos Aires, Argentina

2. Laboratorio de Anatomía Vegetal, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428 EHA, Buenos Aires, Argentina

Abstract

The ultrastructural impact of low ethylene biosynthesis (less than 0.5% of normal levels) was evaluated in transgenic (A11.1) tomatoes ( Lycopersicon esculentumMill.) expressing an antisense 1-aminocyclopropane-1-carboxylic acid synthase (ACC-S) transgene by means of transmission and environmental scanning electron microscopy. In 48-day mature green fruit, no significant ultrastructural differences were found between transgenic and control tomatoes. In 78-day control fruit, which were overripe and showed deteriorated texture, many areas of the cytoplasm were devoid of structures, and micrographs showed cell collapse with folding and dissolution of the cell wall. On the other hand, in 90-day transgenic fruit, which were firm and not ripe, the cytoplasm showed a relatively high electron density. Plastids retained remnants of chloroplast thylakoids along with significant amounts of osmiophylic plastoglobuli, but lycopene was not detected. Conspicuous starch granules were observed in mature green transgenic tomatoes, but were not detected in 90-day chlorochromoplasts. Electron-dense regions reflecting the integrity of the middle lamella alternated with other partially degraded regions. This incipient dissolution of the middle lamella pectic polymers may be attributable to nonenzymatic deaggregation or to cell-wall hydrolases which could be ethylene independent or responsive to very low levels of ethylene. Besides, cells were attached along extended contact areas and appeared turgid. This feature may provide an explanation of firmness retention that does not solely involve cell walls. Disruption of the middle lamella and development of lycopene crystalloids were observed when exogenous ethylene (12 ppm) was applied.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,General Chemical Engineering,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3