Wireless Hybrid Vehicle Three-Phase Motor Diagnosis Using Z-Freq Due to Unbalance Fault

Author:

Ngatiman N. A., ,Othman M.N.B.,Nuawi M. Z., ,

Abstract

Online diagnostics of three phase motor rotor faults of hybrid vehicle can be identified using a method called machine learning. Unfortunately, there is still a constraint in achieving a high success rate because a huge volume of training data is required. These faults were represented on its frequency content throughout the Fast Fourier Transform (FFT) algorithm to observe data acquired from multi-signal sensors. At that point, these failure-induced faults studies were improved using an enhanced statistical frequency-based analysis named Z-freq to optimize the study. This analysis is an investigation of the frequency domain of data acquired from the turbine blade after it runs under a specific condition. During the experiment, the faults were simulated by equipment with all those four conditions including normal mode. The failure induced by fault signals from static, coupled and dynamic were measured using high sensitivity, space-saving and a durable piezo-based sensor called a wireless accelerometer. The obtained result and analysis showed a significant pattern in the coefficient value and distribution of Z-freq data scattered for all flaws. Finally, the simulation and experimental output were verified and validated in a series of performance metrics tests using accuracy, sensitivity, and specificity for prediction purposes. This outcome has a great prospect to diagnose and monitor hybrid electric motor wirelessly.

Publisher

Penerbit UTHM

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials,Materials Science (miscellaneous),Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3