The Machinability Performance of RBD Palm Oil Dielectric Fluid on Electrical Discharge Machining (EDM) of AISI D2 Steel

Author:

Supawi A., ,Ahmad S.,Ismail N. I.,Talib N.,Lee W. K.,Abdul Haq R. H.,Ho F. H.,Ibrahim M. R.,Karim F., , , , , , , ,

Abstract

Electrical discharge machining (EDM) is a high-precision manufacturing process that may be implemented to any electrically conductive material, notwithstanding its of mechanical residences. It’s far a non-contact process using thermal energy that is used in a wide range of applications, especially for difficult-to-cut materials with complicated shapes and geometries. The dielectric is critical in this process as it focuses the plasma channel above the processing and also serves as a debris carrier. The long-term use of dielectric used in EDM process pollutes to the atmosphere and is harmful to the operator's health. This study compares the efficiency of refined, bleached, and deodorized (RBD) palm oil (cooking oil) with traditional hydrocarbon dielectric, kerosene using copper electrode in the finishing process of AISI D2 steel. Low peak current, Ip 1A to 5A and pulse duration, ton up to 150μs were chosen as the main parameters. The effects of material removal rate (MRR), electrode wear rate (EWR), and surface roughness (Ra) were evaluated. The result shows that RBD palm oil has higher MRR which is 33.4821mm3/min while kerosene is 22.4888mm3/min, both at Ip=5A and ton=150µs. The improvement when RBD palm oil is used as dielectric is 48.88% compared to kerosene. With the increase in peak current, the EWR increases but it is inversely proportional to the pulse duration. The lowest EWR is obtained at the same IP=1A and ton=150µs for both RBD palm oil and kerosene which is 0.0010mm3/min and 0.0002mm3/min respectively. The minimum value of Ra for RBD palm oil is 2.15µm at IP=1A and ton=150µs, while for kerosene it is 2.11µm at IP=1A and ton=150µs. In terms of finishing process efficiency, RBD palm oil, a biodegradable oil-based dielectric fluid, has shown significant potential in EDM processing of AISI D2 steel.

Publisher

Penerbit UTHM

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials,Materials Science (miscellaneous),Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Comparative performance investigation and sustainability assessment in electrical discharge machining of SS316 using different dielectrics;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2023-09-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3