Author:
Baharuddin Nur Khaida, ,Mohamed Nazri Fadzli,Abu Bakar Badorul Hisham,Beddu Salmia,A. Tayeh Bassam, , , ,
Abstract
The strength of concrete structures deteriorates after exposure to fire. Strength loss varies with elevated temperature, fire duration, and the mechanical properties of concrete. Repairing and strengthening affected structures are important to improve their performances. Fire-damaged concrete has been repaired using fiber-reinforcing polymer. The superior properties of ultrahigh performance fiber-reinforced concrete (UHPFRC) make it suitable as a repair material. Furthermore, an excellent repair material should be able to bond properly with the substrate and maintain its structural integrity. The aim of this paper is to review the potential use of UHPFRRC as a repair material for fire-damaged concrete in terms of bond strength. Previous studies showed that developing efficient rehabilitation techniques that enable fire-damaged structures to be restored has some challenges. Whether UHPFRC can be used as a repair material particularly for fire-damaged concrete structure is recommended to be proven in future studies.
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials,Materials Science (miscellaneous),Civil and Structural Engineering
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献