A Prediction Model for Natural Frequencies on Kevlar/Glass Hybrid Laminated Composite using Artificial Neural Networks (ANN)

Author:

Mat Norman Mohd Arif, ,Sivakumar Kishen,Ab Patar Mohd Nor Azmi,Mahmud Jamaluddin, , ,

Abstract

This paper aims to developa prediction model for the natural frequencies on Kevlar/Glass hybrid laminated composite plates using Artificial Neural Networks (ANN). Finite element simulations were performed to generate data for the natural frequencies under various lamination schemes and fibre angles. Rectangular symmetric and anti-symmetric hybrid laminated composite plates were modeled using commercial software, ANSYS, and meshed using shell elements. The Matlab-ANN tool was used to generate the prediction model, where the generated data (natural frequencies) from the finite element simulations were used for training and testing of the prediction model. The network adapted a two-layer feed-forward algorithm. The adequacy of using ANN in predicting natural frequencies was verified, where the coefficient of determination, R2, was found to be over 0.995. The overall results proved that ANN could be a useful tool, where the prediction model produced an error of less than 5%, when compared to the simulated values of natural frequency of various hybrid laminated composites using finite element analysis. These findings concluded that the current study had contributed significant knowledge in understanding the prediction of natural frequency on hybrid laminated composite using the ANN model.

Publisher

Penerbit UTHM

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials,Materials Science (miscellaneous),Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3