Rubber-Tree Leaf Diseases Mapping Using Close Range Remote Sensing Images

Author:

Rasib Abd Wahid, ,Abd Hamid Nurmi-Rohayu,Mohd Yaacob Muhammad Latifi,Abd Ghani Zarawi,Idris Nurul Hawani,Alvin L M S,Hassan Muhammad Imzan,M Idris Khairulnizam,Dollah Rozilawati,Mohd Salleh Anuar,Ahmad Mustaffa Anjang, , , , , , , , , ,

Abstract

Currently, close-range remote sensing method using drone-based platform which payload compact sensor has been used for monitoring and mapping in the agriculture sector at large area. Thus, this study is deployed drone with a compact sensor to identify the rubber tree leaf diseases based on two groups of a spectral wavelength which are visible (RGB: 0.4 μm – 0.7 μm) and near infrared (NIR: 0.7μm – 2.0 μm), respectively. Spectral obtained from drone-based platform will be validated using ground observation handheld spectroradiometer. Eight types of rubber tree clones leaf at three different conditions (healthy, unhealthy and severe) were randomly selected within the 9.4-hectare experimental rubber plot, Rubber Research Institute of Malaysia (RRIM), Kota Tinggi, Johor whereby consist RRIM 2000 series, RRIM 3000 series, and PB series, respectively. Based on the result, quantitative analysis shows that the f-value is smaller than Critical-one tail for healthy, unhealthy while for severe the f-value is larger than Critical-one tail. The f-value is 2.887 < 4.283 (healthy), 0.002 < 0.264 (unhealthy) and 1.008 > 0.0526, respectively. Thus, this can be concluded that spectral and estimate is equal at the 0.05 significant levels. While qualitative analysis shows that each rubber clone tree diseases can be distinguished at the near infrared band for healthy, unhealthy, and severe, respectively.

Publisher

Penerbit UTHM

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials,Materials Science (miscellaneous),Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Systematic Review of the UAV Technology Usage in ASEAN;IEEE Open Journal of Vehicular Technology;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3