Evaluation Methodology for Respiratory Signal Extraction from Clinical Cone-Beam CT (CBCT) using Data-Driven Methods
-
Published:2021-07-31
Issue:5
Volume:13
Page:
-
ISSN:2229-838X
-
Container-title:International Journal of Integrated Engineering
-
language:
-
Short-container-title:IJIE
Author:
Mohd Amin Adam Tan, ,Mokri Siti Salasiah,Ahmad Rozilawati,Ismail Fuad,Abd Rahni Ashrani Aizzuddin, , , ,
Abstract
The absence of a ground truth for internal motion in clinical studies has always been a challenge to evaluate developed methods to extract respiratory motion especially during a 60-second cone-beam CT (CBCT) scan in Image-Guided Radiotherapy Treatment (IGRT). The unavailability of a gold standard has led this study to present a methodology to manually track respiratory motion on a clinically acquired CBCT projection data set over a 360° view angle. The tracked signal is then used as a reference to assess the performance of four data-driven methods in respiratory motion extraction, namely: the Amsterdam Shroud (AS), Local Principal Component Analysis (LPCA), Intensity Analysis (IA), and Fourier Transform (FT)-based methods that do not require additional equipment nor protocol to the existing treatment delivery. The assessment using this reference signal includes both quantitative and qualitative analysis. It is found out quantitatively that all four methods managed to extract respiratory signals that are highly correlated with the reference signal, with the LPCA method displaying the highest correlation coefficient value at 0.9108. Furthermore, the normalized root-mean-squared amplitude error of detected peaks and troughs within the signal from the LPCA method is also lowest at 1.6529 % compared to the other methods. This result is further supported by qualitative analysis via visual inspection of each extracted signal plotted with the reference signal on the same axes.
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials,Materials Science (miscellaneous),Civil and Structural Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献