Autism Spectrum Disorder Detection Based on Wavelet Transform of BOLD fMRI Signals Using Pre-trained Convolution Neural Network

Author:

Al-Hiyali Mohammed I., ,Yahya Norashikin,Faye Ibrahima,Khan Zia, , ,

Abstract

Autism spectrum disorder (ASD) is a mental disorder and the main problem in ASD treatment has no definite cure, and one possible option is to control its symptoms. Conventional ASD assessment using questionnaires may not be accurate and required evaluation of trained experts. Several attempts to use resting-state functional magnetic resonance imaging (fMRI) as an assisting tool combined with a classifier have been reported for ASD detection. Still, researchers barely reach an accuracy of 70% for replicated models with independent datasets. Most of the ASD studies have used functional connectivity and structural measurements and ignored the temporal dynamics features of fMRI data analysis. This study aims to present several convolutional neural networks as tools for ASD detection based on temporal dynamic features classification and improve the ASD prediction results. The sample size is 82 subjects (41 ASD and 41 normal cases) collected from three different sites of Autism Brain Imaging Data Exchange (ABIDE). The default mode network (DMN) regions are selected for blood-oxygen-level-dependent (BOLD) signals extraction. The extracted BOLD signals' time-frequency components are converted to scalogram images and used as input for pre-trained convolutional neural networks for feature extraction such as GoogLenet, DenseNet201, ResNet18, and ResNet101. The extracted features are trained using two classifiers: support vector machine (SVM) and K-nearest neighbours (KNN). The best prediction results are 85.9% accuracy achieved by extracted the features from DenseNet201 network and classified these features by KNN classifier. Comparison with previous studies, has indicated the good potential of the proposed model for diagnosis of ASD cases. From another perspective, the presented method can be applied for analysis of rs-fMRI data on other type of brain disorders.

Publisher

Penerbit UTHM

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials,Materials Science (miscellaneous),Civil and Structural Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3