Downlink Massive MIMO Systems: Reduction of Pilot Contamination for Channel Estimation with Perfect Knowledge of Large-Scale Fading

Author:

Abdullah Qazwan, ,Mohd Shah Nor Shahida,Salh Adeb,A. Almohammedi Akram,Anuar Shipun Hamza,A. B. Bin Saeed, , , , ,

Abstract

Massive multiple-input multiple-output (MIMO) technology is considered crucial for the development of future fifth-generation (5G) systems. However, a limitation of massive MIMO systems arises from the lack of orthogonality in the pilot sequences transmitted by users from a single cell to neighboring cells. To address this constraint, a proposed solution involves utilizing orthogonal pilot reuse sequences (PRS) and zero forced (ZF) pre-coding techniques. The primary objective of these techniques is to eradicate channel interference and improve the experience of end users who are afflicted by low-quality channels. The assessment of the channel involves evaluating its quality through channel assessment, conducting comprehensive evaluations of large-scale shutdowns, and analyzing the maximum transmission efficiency. By assigning PRS to a group of users, the proposed approach establishes lower bounds for the achievable downlink data rate (DR) and signal-to-interference noise ratio (SINR). These bounds are derived by considering the number of antennas approaches infinity which helps mitigate interference. Simulation results demonstrate that the utilization of improved channel evaluation and reduced loss leads to higher DR. When comparing different precoding techniques, the ZF method outperforms maximum ratio transmission (MRT) precoders in achieving a higher DR, particularly when the number of cells reaches 𝛶𝛶𝑝𝑝=7.

Publisher

Penerbit UTHM

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials,Materials Science (miscellaneous),Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3