Acoustic Feedback Noise Cancellation in Hearing Aids Using Adaptive Filter

Author:

Ravi Kumar D. N. S., ,Madhavi K. Reddy,Praveen N.,P. Kumar Hari Hara,Srinivas Ganganagunta,Raju M. V., , , , ,

Abstract

To enhance speech intelligibility for people with hearing loss, hearing aids will amplify speech using gains derived from evidence-based prescriptive methods, in addition to other advanced signal processing mechanisms. While the evidence supports the use of hearing aid signal processing for speech intelligibility, these signal processing adjustments can also be detrimental to hearing aid sound quality, with poor hearing aid sound quality cited as a barrier to device adoption. In general, an uncontrolled environment may contain degradation components like background noise, speech from other speakers etc. along with required speech components. In this paper, we implement adaptive filtering design for acoustic feedback noise cancellation in hearing aids. The adaptive filter architecture has been designed using normalized least mean square algorithm. By using adaptive filters both filter input coefficients are changeable during run-time and reduce noise in hearing aids. The proposed design is implemented in matlab and the simulations shows that the proposed architecture produces good quality of speech, accuracy, maintain stable steady state. The proposed design is validated with parameters like Noise Distortion, Perceptual Evaluation of Speech Quality, Signal to Noise Ratio, and Speech Distortion. The feedback canceller is implemented in MATLAB 9.4 simulink version release name of R2018a is used for validation with Echo Return Loss Enhancement (ERLE). The ERLE of the NMLS is reduced when the filter order is increases.Around 10% of the power spectrum density (PSD) is less when compared with existing designs.

Publisher

Penerbit UTHM

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials,Materials Science (miscellaneous),Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3