CPW-Fed Microstrip Patch Antenna for Millimeter Wave Applications

Author:

Shaik Khader Zelani, ,Siddaiah P.,Prasad K. Satya, ,

Abstract

The antenna elements have been consuming more power and inoperative area with high operational frequency. Therefore, an advanced antenna element design is necessary to cross over the above faults. In this research work, the CPW-Fed microstrip patch antenna is designed using EHF range for millimeter-wave applications. CPW-fed and combinations of DGS-CPW-fed microstrip patch antennas are novel methods, these designs are enhancing many characteristics of microwave circuits, such as narrow bandwidth, cross-polarization, low gain, etc. The researchers are facing many issues in this research area, therefore Fed-CPW design has been taken as a challenging issue. Investigators are working on wideband antennas, as well as patch antennas that can be used for both single- and dual-band applications. In addition to multiband applications, DGS, CPW-Fed Slot antennas are loaded with filters, these enhancements are providing waveguides and amplification tuning. The proposed research deals with a CPW-Fed Microstrip Patch satellite antenna, which is specially modeled to operate at various high-frequency values as well as Extremely High Frequency (EHF) range. A T-Shaped Microstrip patch antenna, which is dimensioned at 11.4x2.5x1.6 mm3 has been placed on Rogers R04003 substrate. The proposed antenna has CPW-Fed with ground dimensions which are considered as 5.9mm*8mm & feed dimensions as 3.8mm*9mm. Due to CPW-feed, the proposed antenna has achieved huge bandwidth i.e 13GHz. Hence the proposed antenna design is compact and suitable at higher frequencies. Simulation results approve that it is a good antenna model. The performance measures like return loss, gain, and VSWR has been improved compared to earlier models. Moreover, this CPW-fed microstrip patch antenna approach is most useful for 5G applications and simulation results are outperforms with designed frameworks. The proposed antenna resonates from 24GHz to 37.6GHz, with good impedance matching at |S11|<=-10dB. The obtained VSWR is in the range of 1 and 2. The gain at resonant frequencies is ranged from 4 to 6 dB. The proposed antenna is useful to deploy in 5G applications as it is resonating in millimeter-wave frequencies. The following model is very useful for 5G applications andprovides resonant frequencies 4 to 6 dB. The impedance matching is also improved by 15% compared to earlier models. The following experiment is designed on the HFSS software tool and CPW-Fed functionality is verified.

Publisher

Penerbit UTHM

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials,Materials Science (miscellaneous),Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3