Pretrained DcAlexnet Cardiac Diseases Classification on Cognitive Multi-Lead Ultrasound Dataset

Author:

Saikumar K, ,Rajesh V.,Rahman Md. Zia Ur, ,

Abstract

The DcAlexNetCNN deep learning classifier can easily track patterns in medical images (brain, heart, spinal cord and etc.) precisely. According to WHO (world health organization) every year 5 billion people are affecting heart diseases and heart-attacks. Heart abnormalities sometimes tends to death; therefore, an efficient medical image pre-processor and deep learning classifier is needed for diagnosis. So that in this research work multi-class DcAlexNet classifier, RRS-HSB segment-filter has been implemented. The RRS (Restrictive Random segmentation) and GHSB (Gaussian Hue saturation brightness filtration) modules are fused to get multi-level feature. The training process has been incorporated to EchoNet dataset and testing process can be verified to real time samples. The segmented features as well as filtered feature are loaded into weighted .CSV file. The following features are classified tends to get predicting abnormalities in heart ultra sound image. The pretrained DcAlexNet CNN model is loading to EchoNet 1 lakh samples using 165 layers such as normalized layer, dense layer, flatten layer, max pooling layer and ReLu layer. The computer aided design with corresponding CNN layers has been finding hidden sample over to get heart abnormality location. The experimental results in terms of Dice score 98.89%, Accuracy 99.455, precision 99.23%, recall 98.34%, F-1 score 98.92%, CC 99.27%, and sensitivity 99.34% had been attained. The attained performance metrics are competed with present technologies and outperformance the application accuracy on heart diagnosis.

Publisher

Penerbit UTHM

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials,Materials Science (miscellaneous),Civil and Structural Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Revolutionizing Image Recommendations: A Novel Approach with Social Context and CNN;2023 3rd International Conference on Smart Generation Computing, Communication and Networking (SMART GENCON);2023-12-29

2. Efficiency and Precision: Control Systems Empowered by Smart Image Processing;2023 3rd International Conference on Smart Generation Computing, Communication and Networking (SMART GENCON);2023-12-29

3. Security of Medical Multimodality Images for Telemedicine Using PDESNet Encryption Standard;2023 2nd International Conference on Futuristic Technologies (INCOFT);2023-11-24

4. Prevention Of DDOS Attacks in Cloud Using Combinational Learning Approach;2023 4th IEEE Global Conference for Advancement in Technology (GCAT);2023-10-06

5. Automation of Health Monitoring System for Elderly and COVID-19 Patients using IOT;2023 IEEE 8th International Conference for Convergence in Technology (I2CT);2023-04-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3