Modelling and Experimental Study of Dissimilar Arc Stud Welding of AISI 304L to AISI 316L Stainless Steel

Author:

Mezher Marwan T., ,Barrak Osamah Sabah,M. Namer Nasri S., ,

Abstract

This paper has aimed to try and establish a successful weld joint between AISI 304L stainless steel as a stud and AISI 316L stainless steel as a plate by using an arc stud welding process. The effect of different current and time welding on the torque results was experimentally studied, by using three-level of each process parameters. The post-weld heat treatment (PWHT) was carried out on the optimum sample of torque, to study the effect of PWHT on mechanical properties (torque and hardness) and microstructure of the welding zone. In the present work, a3-D finite element model was developed by using ANSYS software version 18 to analyze the influence of time and current welding on the temperature distribution and residual stresses of the resultant welded joints. A transient thermal model was built to predict the temperature distribution whereas the residual stresses were determined by using a static structural model. The PWHT has been used to reduce the amount of residual stresses and enhance the mechanical properties of the welded joint. The micro-hardness based on the Vickers test and the microstructure of welded specimens of with and withoutPWHT have been investigated. The simulation results reveal that the generated temperature and the residual stress is strongly affected by the time and current welding. The mechanical test results indicated that the PWHT prompted an improvement in the hardness values.

Publisher

Penerbit UTHM

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials,Materials Science (miscellaneous),Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3