Investigation of Cylinder Deactivation (CDA) Application on a Naturally Aspirated Engine

Author:

Zainal Abidin Shaiful Fadzil, ,Khalid Amir,Muhamad Said Mohd Farid,Zahari Izzarief,Abdul Jalal Rifqi Irzuan, , , ,

Abstract

Increasing oil prices and emission legislation have forced automotive company to investigate new methods and technologies to reduce the harmful effect produced from the motor vehicle, particularly CO2 (Carbon-Dioxide).A lot of studies and research have been put into in order to achieve a zero emission vehicle with the usage of electricity rather than fossil fuel, but the challenge to cost and environmental effect makes an IC engine is still being the predominant power plant for automobile in this century. One of the popular techniques among engine manufacturers to have a better engine efficiency is cylinder deactivation. Cylinder deactivation is a promising method to reduce the fuel consumption and emission by forced the engine to operate at higher load. However, the higher combustion pressure and extreme temperature at firing cylinders will result in higher NOx composition. This paper will investigate further the engine performance, fuel economy and emission by using one-dimensional (1-D) simulation tool. A standard 1.6 litre naturally aspirated four in-line cylinders, port fuel injection engine is modelled and correlated to the measured test data. The model is then simulated with cylinder deactivation mode by deactivating the intake and exhaust valves at cylinders no 2 and no 3 as well as fuel injection at various engine speeds at part load conditions to show improvements in fuel consumption, CO2 emissions, pumping losses and effects on CO and NOx emission. This correlated model is then used to investigate the application of EGR in order to reduce the emission level. Also, the effects on in-cylinder combustion as well as pumping losses are presented. The study shows that the application of EGR is very significant for engine with CDA mechanism to ensure the overall engine fuel consumption and emissions are reduced simultaneously.

Publisher

Penerbit UTHM

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials,Materials Science (miscellaneous),Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3