Uncertainties Consideration in Empirical Frequency Response Function Data for Damage Identification Based On Artificial Neural Network

Author:

Padil Khairul H., ,Bakhary Norhisham,Wan Hassan Wan Nur Firdaus,Darus Nadirah, , ,

Abstract

The modern application of frequency response function (FRF) with artificial neural networks (ANN) has become one of the leading methods in vibration-based damage detection approach. However, since full-size empirically obtained FRF data is used as ANN input, a broad composition ANN input layer series would occur. Consequently, principal component analysis (PCA) is adopted to compress the FRF data magnitude. Despite this, PCA alone is unable to select the important FRF data features effectively, due to the exceedingly FRF data size in addition with existing uncertainties. Therefore, this study proposed the merger of a non-probabilistic analysis and ANN approach with PCA by considering the uncertainties effect and the inefficiency of using empirical FRF data. The empirical FRF data is obtained from a steel truss bridge structure. The results show that the PoDE values above 95% are measured at the particular executed damage locations and the DMI values show the damage severity at the actual damage locations. Overall, the results show that the proposed method is capable in considering the uncertainties effect on the empirical FRF data for structural damage identification.

Publisher

Penerbit UTHM

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials,Materials Science (miscellaneous),Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3