Numerical Study of Ducted Turbines in Shallow Water Environment

Author:

,Rosli Azzim,Abdul Rahman Anas, ,Abdul-Rahman Ayu, ,Marzuki Najwa Syafiqa, ,Muhammad Fadhli Wan, ,Misran Syafiq, ,Ramadhan Basiddiq Ramadhan Ahmed,

Abstract

The development of tidal turbines, particularly for shallow water applications, is still in its early stages. Vertical axis tidal turbines (VATT) are often preferred for shallow water due to the bidirectional nature of tidal currents. Implementing a channelling system around a tidal turbine can significantly stabilise the flow field, increase the current velocity, and enhance the energy efficiency of the turbine. However, there has been limited exploration of using channelling techniques to improve the performance of VATTs in turbid areas. This study employs a numerical analysis using computational fluid dynamics (CFD) to investigate VATTs. The VATT model is represented by a cylindrical object with a diameter and height of 5 meters. The simulation focuses on the wake characteristics and the design of turbine arrays. The Reynolds-Averaged Navier-Stokes (RANS) equations are utilised as flow viscous solvers in ANSYS Fluent, and the effectiveness of the ducts in energy conversion is calculated using the realizable two-layer turbulence model. The primary objective of this study is to examine the impact of converging devices on tidal turbine performance and propose an optimal design for shallow water applications. The proposed ducted design shows an increase in current speed passing through the device by 11.1%. Although the wake generated by the multi-row staggered array layout disperses the flow to the side of the domain, the model demonstrates a 0.9% improvement in velocity magnitude. Conversely, the results for the single-row inline layout indicate the most favorable arrangement for shallow water applications, with a 19.4% increase in velocity magnitude and a shorter wake generation.

Publisher

Penerbit UTHM

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3