IoT E-Waste Monitoring System to Support Smart City Initiatives

Author:

Ali Nurul Aifah Liaqat, ,Ramly Ruwaida,Sajak Aznida Abu Bakar,Alrawashdeh Rula, , ,

Abstract

This project introduces the design and development of IoT E-waste monitoring system to support Green City initiatives in real-time. The main objective of this system is to design an IoT-based recycle e-waste monitoring system that will provide an efficient solution to electronics waste collection and generation data. The hazardous chemical components of e-waste have potentially adverse impacts on ecosystems and human health if not managed and monitored properly. Hence, the importance to constantly monitor the condition of the e-waste bin. The system measures and delivers up-to-date information to the system’s administrator on the waste level and bin’s current temperature in real-time. In case of fire, the system will give notification via its flame indicator. Agile Model is used as the research methodology as it offers an adaptive approach in respect to what features need to be developed. The proposed system consists of HC - SR04 Ultrasonic sensor which measures the waste level, a DS18B20 temperature sensor that detects the temperature in the bin, KY- 026 flame sensor, a Raspberry Pi 3 Model B+ as a microcontroller and ThingSpeak as an IoT web platform. ThingSpeak concurrently stores data for future use and analysis, such as prediction of the peak level of waste bin. This system is expected to increase the usage of e-waste recycle bin, hence supporting the Green City initiatives and creating a greener environment by monitoring and controlling the collection of e-waste smartly through the concept of Internet-of-Things (IoT).

Publisher

Penerbit UTHM

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials,Materials Science (miscellaneous),Civil and Structural Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3