Cutting Force and Surface Roughness Optimizations in End Milling of GFRP Composites Utilizing BPNN-Firefly Method

Author:

,Effendi M. Khoirul,Soepangkat Bobby O. P., ,Norcahyo Rachmadi, ,jono Suhard, ,purno Sam,

Abstract

The excessive cutting force that is generated in the end milling process of glass fiber-reinforced polymer (GFRP) composites can lower the surface quality. Hence, it is necessary to select the correct levels of end milling parameters to minimize the cutting force (CF) and surface roughness (SR). The parameters of the end milling process comprised the depth of cut (doc), spindle speed (n), and feeding speed (Vf). This study emphasized on the modeling and minimization of both CF and SR in the end milling of GFRP combo fabric by combining backpropagation neural network (BPNN) method and firefly algorithm (FA). The FA based BPNN was first performed to model the end-milling process and predict CF and SR. It was later also executed to obtain the best combination of end-milling parameter levels that would provide minimum CF and SR. The outcome of the confirmation experiments disclosed that the integration of BPNN and FA managed to accurately predict and substantially enhance the multi-objective characteristics

Publisher

Penerbit UTHM

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3