Grey-Fuzzy Hybrid Optimization and Cascade Neural Network Modelling in Hard Turning of AISI D2 Steel

Author:

Kumar Ramanuj, ,Pandey Anish,Panda Amlana,Mallick Rajshree,Sahoo Ashok Kumar, , , ,

Abstract

Nowadays hard turning is noticed to be the most dominating machining activity especially for difficult to cut metallic alloys. Attributes of dry hard turning are highly influenced by the amount of heat generation during cutting. Some major challenges are rapid tool wear, lower tool-life span, and poor surface finish but simultaneously generated heat is enough to provide thermal softening of hard work material and facilitates easier shear deformation thus easy cutting. Also, plenty of works reported the utilization of various cooling methods as well as coolants which successfully retard the intensity of cutting heat but this leads to additional cost as well as environmental and health issues. However, still, there is scope to select proper cutting tool materials, its geometry, and appropriate values of cutting parameters to get favorable machining outcomes under dry hard turning and avoid the cooling cost, environmental, and health issue. Considering these challenges, current work utilizes PVD-coated (TiAlN) carbide insert in dry hard turning of AISI D2 steel. The multi-responses like tool-flank wear, chip morphology, and chip reduction coefficient are considered. The amalgamation of input processing variables must be optimum for the effectual performance of hard to process materials turning. Generally, the Fuzzy logic hypothesis represents the uncertainties co-related with fuzziness, and deficiency in the data concerned with the problem. Further, to achieve the best combination of input cutting terms, grey-fuzzy hybrid optimization (Type I and Type II) is utilized considering the Gaussian membership function. Type II grey-fuzzy system attributed to 15 % less error (between GRG and GFG) compared to Type I. Hence, Type II grey-fuzzy system is utilized to get the optimal set of input terms. The optimal combination of input terms is found as t-1 (0.15 mm), s-4 (0.25 mm/rev) and is Vc-2 (100 m/min) which is comparable to the results obtained under spray impingement cooling using CVD tool in the literature. However, hard turning can be assessed under the dry condition with a PVD tool at the obtained optimal input condition for industrial uses. Further, six different types of cascade-forward-back propagation neural network modelling is accomplished. Among all models, CFBNN-4 model exhibited the best prediction results with a mean absolute error of 2.278% for flank wear (VBc) and 0.112% for the chip reduction coefficient (CRC). However, this model can be recommended for other engineering modelling problems. The outcomes of this research may be of immense importance to the tool manufacturers and machining industry.

Publisher

Penerbit UTHM

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials,Materials Science (miscellaneous),Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3