An Efficient Design of the Piezoresistive Pressure Sensor Applied for Micro Aerial Vehicle

Author:

Pham Anh-Duc, ,Nguyen Trieu Khoa,Le Hong Hieu,Dang Phuoc Vinh, , ,

Abstract

In this research, the developing process of a piezoresistive pressure sensor working in the atmosphere environment applied in micro aerial vehicle using the MEMS fabrication method is introduced. The sensor consists of four Au/Cr piezoresistors in a Wheatstone bridge configuration on a wet oxidized silicon diaphragm. To fabricate the sensor, three lithographic steps were conducted: the first one is to define the resistors and Au/Cr lines/pads, the second and the third ones are to determine the width and the thickness of the square SiO2/Si diaphragm, respectively. The sensor diaphragm shape and thickness were defined by the anisotropic etching of Si in tetramethylammonium hydroxide (TMAH) solution, and the resistors array are formed by sputtering and wet etching method. The sensor size is 6000 μm by 6000 μm. The sensor output voltage was measured for various applied pressure levels from -0.9to 1.2 bar with 5V voltage supply. The fabricated pressure sensor also exhibits a sensitivity of 50.1 mV/bar

Publisher

Penerbit UTHM

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials,Materials Science (miscellaneous),Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3