Piezoelectric Photoacoustic System for Fluid Flow Monitoring

Author:

Chua Hui Ling, ,Huong Audrey,

Abstract

The aim of this study is to investigate the feasibility of using a laboratory assembled piezoelectric based photoacoustic (PA) system for noncontact monitoring fluid flow. This is to overcome the drawbacks of some existing fluid flow detection systems, which include expensive equipment and their maintenance cost, limited sensitivity and specificity in detecting signals from restricted regions or at low flow velocity. The produced PA signal waves detected by a piezoelectric transducer used in this study was processed to determine the required phase value (Ф), which value was found to correlate linearly with fluid flow status. The fluid pressure difference of 1.16 pascals (Pa) and 11.90 Pa applied to the developed mock circulatory system was observed to produce changes in phase value with mean ± standard deviation (SD) ΔФ of 0.79 ± 0.07 rad and 2.17 ± 0.07 rad, respectively, suggesting a linear response of the developed system with changes in circulation system. This trend was supported with the relatively low absolute difference of 0.07 ± 0.01 rad in the predicted values as compared to that of the ground truth. This work concluded that the capabilities and simplicity of the proposed PA system renders it feasible for cost effective, non-destructive assessment of fluid flow in future studies.

Publisher

Penerbit UTHM

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials,Materials Science (miscellaneous),Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3