Determination of Rational Values of the Parameters of an Unventilated Trombe Wall Using the Method of Multicriteria Optimization for the Climatic Conditions of Uzbekistan

Author:

A’zamovich Samiev Kamoliddin,

Abstract

The energy demands of the construction sector are expected to multiply over the next decade, driven by population growth, rising incomes, accelerating urbanization and changes in consumption patterns. This process is also dramatically affected by the depletion of fossil resources and high specific energy consumption for heating buildings. Under these conditions, it is necessary to develop comprehensive energy efficiency measures in these areas to meet the energy demands of residential, commercial and administrative buildings. In this work, using the methods of degree-day, multicriteria optimization and regression analysis, the optimal combinations of factors for an unventilated Trombe wall are determined: the orientation of the building, the thermal support of the translucent enclosure of the unventilated Trombe wall and the ratio of the surface of the unventilated Trombe wall to the surface of the building facade. The calculations were performed for three levels of thermal protection for buildings in the climatic conditions of the city of Tashkent (Uzbekistan). A typical one-storey three-room house was chosen as the object. As the calculation results show, within the considered range of values, the relative dominances of the factors are as follows: orientation - 5.37%; thermal support of translucent barriers - 72.95%; and area ratio - 21.68%. Using the optimal values, the specific energy consumption of buildings for heating can be reduced from an average of 12.9-14.8% to 52.6-65.3%. Additionally, the CO2 emissions are reduced from 5621.8 kg to 12435.5 kg per year. The discounted payback period, depending on the investment, ranges from 18.7 to 40.9 years. Regression equations are proposed for three levels of thermal protection of the considered object, making it possible to determine the specific energy consumption for heating.

Publisher

Penerbit UTHM

Subject

Building and Construction,Civil and Structural Engineering,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3