Improving Characteristics of Clayey Soil Using Basalt Fibre, Construction and Demolition Waste and Calcium Carbide

Author:

,Verma Akanksha,Sharma R.K.,

Abstract

When exposed to changes in moisture, highly compressible clay soils usually show the characteristic of swelling and shrinking and have very poor strength properties. The infrastructures standing on such soil produce fractures as a result of this feature, making the buildings unstable and liable to collapse. By enhancing the characteristics of clayey soils using soil stabilization can improve their engineering properties. The purpose of this paper tends to investigate the use of construction and demolition waste (C&D), basalt fibre (BF) and calcium carbide (CCR) for stabilization of highly compressible clayey soil. Several laboratory experiments including differential free swell (DFS), Atterberg limits, standard proctor and unconfined compressive strength (UCS) are conducted on soil alone and in combination with admixtures used. Based on UCS result,optimum percentages of C&D waste, basalt fibre and calcium carbide obtained were further tested for California bearing ratio (CBR). The findings show rising UCS and CBR values with addition of 21% C&D waste, 0.3% basalt fibre and 4% calcium carbide in combination to each other with clayey soil. The thickness for flexible pavement was developed using IITPAVE software for CBR values based on specifications of IRC: 37-2018. The software resultsrevealed a decrease in pavement thickness for all combinations ofcommercial vehicle daily counts of 1000, 3000, and 5000. When clayey soil is combined with C&D waste (21%), BF (0.3%), and CCR (4%) in combination, the greatest reductionin subgrade layer thickness and costis observed. This method not only improves the geotechnicalcharacteristics of the subgradelayer, aids in decreasing the thickness of the pavement, is highly cost-effective, and resolves the issue of disposal of C&D waste and environmental degradation due to CCR.

Publisher

Penerbit UTHM

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3