Off-line English character recognition system

Author:

Prasad Binod Kumar,Dubey Om Prakash

Abstract

Purpose of the study: This paper aims to recognition of handwritten English characters in offline mode. It develops an efficient character recognition model avoiding large variations in handwriting by using better feature extraction techniques.      Methodology: The samples of characters are preprocessed by applying a sequence of operations in succession like Thickening, Thresholding, Filtering, and Thinning. Efficient features like Gradient features and Zonal features have been extracted. Gradient features are helpful to find out stroke information in the character whereas Zonal features detail out local information in a more précised way. Hidden Markov Model is the classifier.   Main Findings: Classification has been started with only a 5-state HMM model but it is observed that as the number of states of HMM model is increased, the corresponding recognition rate is also improved. Finally, with the 36 states HMM model we have got the expected result. This produces an overall average recognition rate of 92.6%. For the letters ‘A’ and ‘W’, the recognition rate is found to be very low, because of a lot of variations in writing style of these letters. Applications of this study: HMM is a flexible tool which is capable of absorbing variations in character images. The future works will be concentrated on improvement of recognition rate of such letters by finding some demarcating features and post processing. The proposed method can be well used in Natural Language Processing, Signature verification, Face recognition like other Pattern Recognition applications.  Novelty/Originality of this study: Preprocessing uses Median filter which removes all stray marks in samples and hence avoids any possibility of false pixels. The combination of Gradient features and Zonal features leads to a recognition accuracy of 92.6% which may be used by researchers in any other domains for the purpose of classification. The application of HMM will motivate the readers to use it for better results of classification.

Publisher

Maya Global Education Society

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3