Pengukuran Prestasi Belajar Mahasiswa Berdasarkan Prediksi Nilai Menggunakan General Linear Model

Author:

Murad Dina Fitria1ORCID,Wijanarko Bambang Dwi2,Murad Silvia Ayunda2,Windyasari Vina Septiana3

Affiliation:

1. Universitas Bina Nusantara, Indonesia

2. Bina Nusantara University, Indonesia

3. Universitas Islam Syekh Yusuf, Indonesia

Abstract

The Covid-19 pandemic is an international disaster experienced by almost all countries in the world. Several research results reveal the special impact of the pandemic on the education sector. Not only lecturers and students, but higher education providers also experience the same thing. Various adjustments were made so that all parties involved were able to adapt properly. It's been two years since the pandemic among us and during that time the learning process has continued. Based on this, several institutions began to take steps that raised questions about whether the learning achievement targets in each subject could still be achieved. This study aims to predict student grades using several machine-learning algorithms. The prediction results are a measure to find out whether learning outcomes have been achieved or not, if not achieved then additional steps need to be taken to help students. The results of this research are expected to help UNIS to prepare appropriate learning models for its students and ensure that all learning achievement targets are achieved. The research method used is a technique of machine learning. The results of this study indicate that the General Linear Model is a classification model with the best accuracy, which can be used to predict student achievement in certain classes based on the evaluation scores of the first structured activity (EKT1), midterm exams, grades (UTS), and second structured activity evaluation scores (EKT2). And it turns out that the UTS score has the greatest influence between EKT1 and EKT.

Publisher

Diponegoro University

Subject

Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3