Perbandingan Performa Cluster Model Algoritma K-Means Dalam Mengelompokkan Penerima Bantuan Program Keluarga Harapan

Author:

Warisa Warisa1,Nurahman Nurahman1

Affiliation:

1. Universitas Darwan Ali, Indonesia

Abstract

Poverty has so far played a role as a problem faced by residents of the Mentawa Baru sub-district, Ketapang. The inability of this community is related to the need to meet education and health needs in social welfare. In assisting the grouping of beneficiary data is carried out using the K-Means algorithm. Apart from that, to increase performance, those who have gone through the first grouping process are then continued using feature selection in the decision tree tool. The algorithm used aims to classify PKH beneficiary data to help the government find out about the handling of the aid program in Mentawa Baru Ketapang sub-district. As for the results obtained from this study, namely, the accuracy of the initial clustering obtained a DBI value of -0.994 at K=8 while the second clustering value that had gone through feature selection with K=3 obtained a DBI value of -0.865. It is known from the performance testing of the comparison of the two clustering that the best performance value is found in the second cluster after going through feature selection.

Publisher

Diponegoro University

Subject

Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3