Abstract
Large arithmetic expressions are dissipative: they lose information and are robust to perturbations. Lack of conservation gives resilience to fluctuations. The limited precision of floating point and the mixture of linear and nonlinear operations make such functions anti-fragile and give a largely stable locally flat plateau a rich fitness landscape. This slows long-term evolution of complex programs, suggesting a need for depth-aware crossover and mutation operators in tree-based genetic programming. It also suggests that deeply nested computer program source code is error tolerant because disruptions tend to fail to propagate, and therefore the optimal placement of test oracles is as close to software defects as practical.
Subject
General Computer Science,Control and Systems Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Deep Mutations have Little Impact;Proceedings of the 13th ACM/IEEE International Workshop on Genetic Improvement;2024-04-16
2. Open to Evolve Embodied Intelligence;IOP Conference Series: Materials Science and Engineering;2023-10-01