Nanotechnology in the Future Treatment of Diabetic Wounds

Author:

Smith Robert A.1

Affiliation:

1. University College London, Medical School, London, United Kingdom

Abstract

Diabetic wounds have a large and increasing burden on the healthcare of the UK. Currently, none of the standard treatment options for the treatment of diabetic wounds specifically target the physiological processes behind their enhanced severity. This review evaluated recent studies in the field of nanotechnology concerned with treating diabetic wounds. The studies had each developed novel therapeutics involving nanomedicines that sought to either enhance angiogenesis, the construction of new blood vessels, or increase collagen production, as well as limit the augmented inflammation, in wounds in diabetic rat or mice models. The investigations tended to either target specific antiinflammatory or pro-proliferative receptors on endogenous cells, or transport growth factors to the wound. Previous studies have shown the beneficial effects of growth factors on healing, but they are easily broken down. By transporting them in nanoscaffolds and liposomes, it has been shown that the longevity of growth factors can be enhanced. Gold nanoparticle matrices have also been shown to have a beneficial effect on healing, by both conveying proliferative factors and independently triggering angiogenesis and collagen production. The most impressive results in the review were achieved by nanomedicines involving multiple growth factors, hence, the review will highlight the beneficial factors to wound healing and suggest a composite therapy to be trialled in the future. The review will evaluate each set of papers using similar nanomedicines and highlight the challenges of transferring this therapy to the clinic.

Publisher

JCFCorp SG PTE LTD

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3