The Feasibility Study of Green Microalgae Assisted Coal Mine Effluent Desalination

Author:

Rawat Shweta,Kumar Sanjay

Abstract

AbstractCarbon-neutral sustainable approaches are highly demanding in the coal energy sector. Coal mine effluent disposal is a severe challenge with crucial concern issues of salinity hazard and heavy metal contamination due to long-duration water and coal interaction. The medium to the high salinity of coal mine effluent leads towards irrigation unsuitability due to the negative impact upon infiltration and permeability of nutrients from the soil to plant. Focusing on the international irrigation water quality standards given by the Food and Agriculture Organization (FAO) of the United Nations, most coal mine effluents are considered negatively impacting crops, soil fertility, groundwater, and aquatic life. Therefore, the current study investigates the direct cultivation suitability of Chlorella pyrenoidosa to simultaneously treat coal mine effluent for salinity removal and biomass production. Initially, C. pyrenoidosa culture adaptation in varying concentrations of coal mine effluents (25%–100%) in coal mine effluent, which are collected from two different points of coal mine named as coal mine effluent 1 (CME1) and coal mine effluent 2 (CME2). Evaluating C. pyrenoidosa growth kinetics, it was observed that the doubling time extended from 2.25 days (100% BG-11 as a medium; control) to 4.33 days (100% CME as a medium). Interestingly, the highest value for biomass production was 1.78 ± 0.12 g/ L with 25% CME 1 supplemented with essential growth nutrients; this value lies near 100% BG11 supplemented growth, 1.81 ± 0.05 g/L. In the current study, taking salinity removal as a prime concern, 100% utilization of CME-2 in place of BG-11 medium was very significant for salinity reduction from 4.80 ± 0.50 mS/cm (initial) to 0.98 ± 0.02 mS/cm (final) during 14 days batch growth. In continuation of that, the significant finding was salinity reduction of both samples (50% and 75% sample) to the level of 0.7 mS/ cm, which lies under the FAO guidelines for irrigation. Present findings also revealed an alternative to conventional processes, i.e., thermal and membrane desalination. Microalgae-assisted desalination is a novel, energy-efficient, eco-sustainable, cost-effective, and long-term operational approach. It has good potential to treat medium to sub-optimal salinity of coal mine effluent coupled with high-value biomass production.

Publisher

Atlantis Press International BV

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3