PERFORMANCE REFINEMENT OF CONVOLUTIONAL NEURAL NETWORK ARCHITECTURES FOR SOLVING BIG DATA PROBLEMS

Author:

Saud Aljaloud

Abstract

Two of the most well-liked neural network frameworks, Theano and TensorFlow, will be compared in this study for how well they perform on a given problem. The MNIST database will be used for this specific problem, which is the recognition of handwritten digits from one to nine. It is a good idea to use more examples than contrasted ones to compare these frameworks because this database is the subject of active research at the moment and has produced excellent results. However, in order to be trained and deliver accurate results, neural networks need a sizeable amount of sample data, as will be covered in more detail later. Because of this, big data experts frequently encounter problems of this nature. As the project description implies, we won't just present a standard comparison because of this; instead, we'll work to present a comparison of these networks' performance in a Big Data environment using distributed computing. The FMNIST or Fashion MNIST database and CIFAR10 will also be tested (using the same neural network design), extending the scope of the comparison beyond MNIST. The same code will be used with the same structure thanks to the use of a higher-level library called Keras, which makes use of the aforementioned support (in our case, Theano or TensorFlow). There has been a surge in open-source parallel GPU implementation research and development as a result of the high computational cost of training CNNs on large data sets. However, there aren't many studies that have been done to assess the performance traits of those implementations. In this study, we compare these implementations carefully across a wide range of parameter configurations, look into potential performance bottlenecks, and pinpoint a number of areas that could use more fine-tuning.

Publisher

Tikrit University

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3