Improving EEG Electrode Sensitivity with Graphene Nano Powder and Neural Network for Schizophrenia Diagnosis

Author:

V. Divya ,Dr. S. Sendil Kumar ,S. Usha ,S. Hemamalini ,Krishnan GokulaORCID

Abstract

Hallucinations and delusions are symptoms of schizophrenia. Due to persistent auditory and visual hallucinations, a person with schizophrenia cannot process reality clearly. Abnormal brain activity results from delusion and hallucination. During the capture of EEG signals, aberrant behavior is detected. The EEG electrodes do not well detect the brain's current distribution. Schizophrenia causes the EEG signal to be warped and less sensitive, which results in incorrect interpretation of brain activity. In this paper, an EEG electrode constructed of graphene nanopowder is suggested that is sensitive to the brain's weak electrical activity. The cold spray approach created graphene EEG electrodes, improving the material bonding and chemical characteristics. By obtaining EEG readings from schizophrenic patients, the sensitivity of the graphene electrode was assessed. The EEG signal was collected from the subject when taking part in cognitive tests like question sessions and numerical problems. Several neural networks (NN) algorithms can be used to identify hallucination and delusion aspects in EEG recordings. Further details regarding the hallucination and delusion aspects in the EEG signal were provided by the NN, showing a Graphene electrode. As compared to other NN models, the comparative study of several NN models revealed that the BFGS quasi-Newtonian backpropagation algorithm accurately recognized hallucination and delusion features.

Publisher

Tikrit University

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Identifying a Suitable Signal Processing Technique for MI EEG Data;Tikrit Journal of Engineering Sciences;2023-10-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3