Improving IoT Security using Lightweight Based Deep Learning Protection Model

Author:

Mahmood Mahmood SubhyORCID,Al Dabagh Najla BadieORCID

Abstract

The Internet of Things (IoT) has recently become an essential ingredient of human life. The main critical challenges that confront IoT are security and protection. Several methods have been developed to protect the IoT; among these methods is Intrusion Detection System (IDS) Deep Learning-based. On the other hand, these types of IDS have a complex operation that takes a long time when applied on IoT devices and is inconvenient for a massive system that includes many connected devices. Thus, this paper suggested a Lightweight Intrusion Detection System (LIDS) IoT model that depends on deep learning using a Multi-Layer Perceptron (MLP) network. LIDS has the following characteristics lightweight, high accuracy, high speed in detection, and deals with a few features in MQTT protocol. The MQTTset dataset was used in training, validating, and testing the proposed model to investigate the performance of the proposed LIDS. The achieved performance ratios for the proposed LIDS, as measured by accuracy and F1-score. The experiment results showed that for the balanced MQTTset dataset, the number of obtained features was 15 with accuracy (95.06) and F1_score (95.31). Also, for the imbalanced MQTTset, the number of obtained features was 12 with accuracy (96.97) and F1-score (98.24). The obtained results have shown the deep learning efficiency role in improving the accuracy of an intrusion detection model by approximately 3.5% compared to other methods in the literature. In addition, the proposed methods reduced the number of features by around 50% of the total number of features, leading to a LIDS operating in a constrained environment.

Publisher

Tikrit University

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3